E-mail
     axel.modave [at] ensta-paris.fr
Phone
     +33 (0)1 81 87 20 82
Address
     UMA – ENSTA Paris
     828, Boulevard des Maréchaux
     91120 Palaiseau (France)
     Office 22.29
ORCID
GoogleScholar
HAL
ResearchGate
Scopus
WebOfScience

I am a CNRS researcher (chargé de recherche) in the POEMS team (CNRS, Inria, ENSTA Paris, UMR 7231) at ENSTA Paris (Palaiseau, France), member of the Institut Polytechnique de Paris, since October 2016. Before, I have been a Postdoctoral Researcher at the Université catholique de Louvain (Belgium), Rice University (Houston, TX, USA) and VirginiaTech (Blacksburg, VA, USA). I obtained my PhD at the Université de Liège (Belgium) in 2013.


Research interests:

  • Numerical simulation of wave propagation (acoustic, electromagnetic and elastic waves)
  • Absorbing boundary conditions and perfectly matched layers
  • High-order methods, discontinuous finite element methods and domain decomposition methods
  • High performance scientific computing and modern architectures

Featured project:  ANR WavesDG – Wave-specific DG finite element methods for time-harmonic problems

Featured publications:

  • S. Pescuma, G. Gabard, T. Chaumont-Frelet, A. M. (2024). A hybridizable Discontinuous Galerkin method with transmission variables for time-harmonic wave problems in heterogeneous media. Submitted for publication. [preprint]
  • R.-C. Meyer, H. Bériot, G. Gabard, A. M. (2024). Coupling of discontinuous Galerkin and pseudo-spectral methods for time-dependent acoustic problems. Accepted for publication in Journal of Theoretical and Computational Acoustics. [link] [preprint]
  • P. Ciarlet Jr, A. M. (2024). Analysis of time-harmonic electromagnetic problems with elliptic material coefficients. Submitted for publication. [preprint]
  • A. M. (2024). Contributions to Efficient Finite Element Solvers for Time-Harmonic Wave Propagation Problems. HDR thesis. IP Paris. [thesis]
  • A. M., T. Chaumont-Frelet (2023). A hybridizable discontinuous Galerkin method with characteristic variables for Helmholtz problems. J. Comput. Phys., 493, 112459. [link] [preprint]