axel.modave [at] ensta-paris.fr
     +33 (0)1 81 87 20 82
     UMA – ENSTA Paris
     828, Boulevard des Maréchaux
     91120 Palaiseau (France)
     Office 22.29

I am a CNRS researcher (chargé de recherche) in the POEMS team (CNRS-ENSTA-INRIA, UMR 7231) at ENSTA Paris (Palaiseau, France), member of the Institut Polytechnique de Paris, since October 2016. Before, I have been a Postdoctoral Researcher at the Université catholique de Louvain (Belgium), Rice University (Houston, TX, USA) and VirginiaTech (Blacksburg, VA, USA). I obtained my PhD at the Université de Liège (Belgium) in 2013.

Research interests:

  • Numerical simulation of wave propagation (acoustic, electromagnetic and elastic waves)
  • Absorbing boundary conditions and perfectly matched layers
  • High-order methods, discontinuous finite element methods and domain decomposition methods
  • High performance scientific computing and modern architectures

Featured project:  ANR WavesDG – Wave-specific DG finite element methods for time-harmonic problems

Featured papers:

  • A. Royer, C. Geuzaine, E. Béchet, A. M. (2022). A non-overlapping domain decomposition method with perfectly matched layer transmission conditions for the Helmholtz equation. Comput Methods Appl Mech Eng, 395, 115006 [link] [preprint]
  • R. Dai, A. M., J.-F. Remacle, C. Geuzaine (2021). Multidirectional sweeping preconditioners with non-overlapping checkerboard domain decomposition for Helmholtz problems. J. Comput. Phys., 453, 110887 [link] [preprint]
  • D. Chicaud, P. Ciarlet, A. M. (2021). Analysis of variational formulations and low-regularity solutions for time-harmonic electromagnetic problems in complex anisotropic media. SIAM J. Math. Anal., 53(3), 2691-2717 [link] [preprint]
  • H. Beriot, A. M. (2021). An automatic PML for acoustic finite element simulations in convex domains of general shape. Int. J. Numer. Meth. Engng., 122, 1239-1261 [link] [preprint]